
IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, 201Z 1

Performance of Cloud Centers with High
Degree of Virtualization under Batch Task

Arrivals
Hamzeh Khazaei, Student Member, IEEE, Jelena Mišić, Senior Member, IEEE, and Vojislav B.

Mišić, Senior Member, IEEE

Abstract—In this paper, we evaluate the performance of cloud centers with high degree of virtualization and Poisson batch
task arrivals. To this end, we develop an analytical model and validate it with independent simulation model. Task service times
are modeled with a general probability distribution, but the model also accounts for the deterioration of performance due to the
workload at each node. The model allows for calculation of important performance indicators such as mean response time,
waiting time in the queue, queue length, blocking probability, probability of immediate service, and probability distribution of the
number of tasks in the system. Furthermore, we show that the performance of a cloud center may be improved if incoming
requests are partitioned on the basis of the coefficient of variation of service time and batch size.

Index Terms—cloud computing, performance modeling, quality of service, response time, virtualized environment, stochastic
process

�

1 INTRODUCTION
Cloud computing is a novel computing paradigm in which

different computing resources such as infrastructure, plat-

forms and software applications are made accessible over

the internet to remote users as services [20]. The use of

cloud computing is growing quickly: spending on cloud-

related technologies, hardware and software is expected

to grow to more than 45 billion dollars by 2013 [16].

Performance evaluation of cloud centers is an important

research task, which is rendered difficult by the dynamic

nature of cloud environments and diversity of user requests

[23]. It is not surprising, then, that only a portion of a

number of recent research results in the area of cloud

computing has been devoted to performance evaluation.

Performance evaluation is particularly challenging in sce-

narios where virtualization is used to provide a well defined

set of computing resources to the users [6], and even more

so when the degree of virtualization – i.e., the number

of virtual machines (VMs) running on a single physical

machine (PM) is high, at the current state of technology,

means well over hundred of VMs. For example, the recent

VMmark benchmark results by VMware [22], a single

physical machine can run as many as 35 tiles or about

200 VMs with satisfactory performance. Table 1 shows the

workloads and applications being run with each VMmark

tile. A tile consists of six different VMs that imitate a

• H. Khazaei is with the Department of Computer Science, University of
Manitoba, Winnipeg, MB, Canada R3T 2N2.
E-mail: hamzehk@cs.umanitoba.ca

• J. Mišić and V. B. Mišić are with the Department of Computer Science,
Ryerson University, Toronto, ON, Canada M5B 2K3.
E-mail: jmisic@scs.ryerson.ca, vmisic@scs.ryerson.ca

typical data center environment. Note that the standby

server virtual machine does not run an application; however,

it does run an operating system and is configured as 1 CPU

with a specified amount of memory and disk space [21].
In this paper, we address this deficiency (i.e., lack

of research in the area) by proposing an analytical and

simulation model for performance evaluation of cloud

centers. The model utilizes queuing theory and probabilistic

analysis to obtain a number of performance indicators,

including response time waiting time in the queue, queue

length, blocking probability, probability of immediate ser-

vice, and probability distribution of the number of tasks in

the system.
We assume that the cloud center consists of many phys-

ical machines, each of which can host a number of virtual

machines, as shown in Fig. 1. Incoming requests are routed

through a load balancing server to one of the PMs. Users

can request one or more VMs at a time, i.e., we allow

batch (or super-) task arrivals, which is consistent with

the so-called On-Demand services in the Amazon Elastic
Compute Cloud (EC2) [1]; as these services provide no

advance reservation and no long-term commitment, clients

may experience delays in fulfillment of requests. While

the number of potential users is high, each user typically

submits single batch request at a time with low probability.

Therefore, the super-task arrival can be adequately modeled

as a Poisson process [8].
When a super-task arrives, the load balancing server

attempts to provision it – i.e., allocate it to a single PM

with the necessary capacity. As each PM has a finite input

queue for individual tasks, this means that the incoming

super-tasks are processed as follows:

• If a PM with sufficient spare capacity is found, the

Digital Object Indentifier 10.1109/TPDS.2012.318 1045-9219/12/$31.00 © 2012 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, 201Z 2

TABLE 1
VMmark workload summary per tile (adapted from [9]).

Virtual Machine Benchmark Operating System Virtual Machine Spec. Metric
Database Server SysBench with MySQL SUSE Linux ES x64 2 vCPUs & 2GB RAM Commits/min

Mail Server LoadSIM Microsoft Win. 2003 x86 2 vCPUs & 1GB RAM Actions/min

Java Server Modified SPECjbb2005 Microsoft Win. 2003 x64 2 vCPUs & 1GB RAM New orders/min

File Server Dbench SUSE Linux ES x86 1 vCPUs & 256 MB RAM MB/sec

Web Server Modified SPECjbb2005 SUSE Linux ES x64 2 vCPUs & 512 MB RAM Accesses/min

Standby N/A Microsoft Win. 2003 x86 1 vCPUs & 256 MB RAM N/A

in

super-task(s)

PM #1

Hardware
Hypervisor layer

VM
1

VM
2
VM
3

VM
m-1

VM
m

M[x]/G/m/m+r

Out

Load Balancing Server

client

client

client

`

client

...

PM #2

Hardware

VM
1

VM
2
VM
3

VM
m-1

VM
m

Out
...

PM #M

Hardware

VM
1

VM
2
VM
3

VM
m-1

VM
m

Out
...

...

Hypervisor layer

Hypervisor layer

PMs

Cloud Center

in

M[x]/G/m/m+r

in

M[x]/G/m/m+r

Fig. 1. The architecture of the cloud center.

super-task is provisioned immediately.

• Else, if a PM with sufficient space in the input queue

can be found, the tasks within the super-task are

queued for execution.

• Otherwise, the super-task is rejected.

In this manner, all tasks within a super-task are processed

together, whether they are accepted or rejected. This pol-

icy, known as total acceptance/rejection, benefits the users

that typically would not accept partial fulfillment of their

service requests. It also benefits the cloud providers since

provisioning of all tasks within a super-task on a single

PM reduces inter-task communication and, thus, improves

performance.

As statistical properties of task service times are not well

known and cloud providers don’t publish relevant data, it

is safe to assume a general distribution for task service

times, preferably one that allows the coefficient of variation

(CoV, defined as the ratio of standard deviation and mean
value) to be adjusted independently of the mean value

[4]. However, those service times apply to a VM running

on a non-loaded PM. When the total workload of a PM

increases, so does the overhead required to run several VMs

simultaneously, and the actual service times will increase.

Our model incorporates this adjustment as well, as will be

seen below.

In summary, our work advances the performance analysis

of cloud computing centers by incorporating a high degree

of virtualization, batch arrival of tasks and generally

distributed service time. These key aspects of cloud centers

have not been addressed in a single performance model

previously.

Specifically, the contributions of this paper are as fol-

lows:

• We have developed a tractable model for the perfor-

mance modeling of a cloud center including PMs that

support a high degree of virtualization, batch arrivals

of tasks, generally distributed batch size and generally

distributed task service time. The approximation error

becomes negligible at moderate to high loads.

• Our model provides full probability distribution of the

task waiting time, task response time, and the number

of tasks in the system – in service as well as in the

PMs’ queues. The model also allows easy calculation

of other relevant performance indicators such as the

probability that a super-task is blocked and probability

that a super-task will obtain immediate service.

• We show that the performance of cloud centers is very

dependent on the coefficient of variation, CoV, of the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, 201Z 3

task service time as well as on the batch size (i.e., the

number of tasks in a super-task). Larger batch sizes

and/or values of coefficient of variation of task service

time that exceed one, result in longer response time but

also in lower utilization for cloud providers.

• Finally, we show that performance for larger batch

sizes and/or high values for CoV might be improved

by partitioning the incoming super-tasks to make

them more homogeneous, and processing the resulting

super-task streams through separate cloud sub-centers.

The paper is organized as follows. In Section 2, we sur-

vey related work in cloud performance analysis as well as in

queuing system analysis. Section 3 presents our model and

the details of the analysis. Section 4 presents the numerical

results obtained from the analytical model, as well as those

obtained through simulation. Finally, Section 5 summarizes

our findings and concludes the paper.

2 RELATED WORK

Cloud computing has attracted considerable research at-

tention, but only a small portion of the work done so

far has addressed performance issues. In [24], a cloud

center is modeled as the classic open network with single

arrival, from which the distribution of response time is

obtained, assuming that both inter-arrival and service times

are exponential. Using the distribution of response time,

the relationship among the maximal number of tasks, the

minimal service resources and the highest level of services

was found.

In [26], the authors studied the response time in terms

of various metrics, such as the overhead of acquiring

and realizing the virtual computing resources, and other

virtualization and network communication overhead. To

address these issues, they have designed and implemented

C-Meter, a portable, extensible, and easy-to-use framework

for generating and submitting test workloads to computing

clouds.

In [25], the cloud center was modeled as an

M/M/m/m + r queuing system from which the dis-

tribution of response time was determined. Inter-arrival

and service times were both assumed to be exponentially

distributed, and the system has a finite buffer of size r.
The response time was broken down into waiting, service,

and execution periods, assuming that all three periods are

independent (which is unrealistic, according to authors’

own argument). We addressed the primary defect of [25]

by allowing the service time to be generally distributed in

[11].

A hierarchical modeling approach for evaluating qual-

ity of experience in a cloud computing environment was

proposed in [17]. Due to simplified assumptions, authors

applied classical Erlang loss formula and M/M/m/K
queuing system for outbound bandwidth and response time

modeling respectively.

In [13], [10], [7], [12], the authors proposed general

analytic models based approach for an end-to-end perfor-

mance analysis of a cloud service. The proposed approach

reduces the complexity of performance analysis of cloud

centers by dividing the overall model into Markovian sub-

models and then obtaining the overall solution by iteration

over individual sub-model solutions. Models are limited

to exponentially distributed inter-events times and a weak

virtualization degree (i.e., less than 10 VMs per PM), which

are not quite realistic.

As can be seen, there is no research work that

considers batch arrival of user tasks (i.e., super-task). In all

related work, service time is assumed to be exponentially

distributed while there is no concrete evidence for such an

assumption. Also, virtualization has not been sufficiently

addressed or ignored at all. Our performance model tries

to address these deficiencies.

Related work regarding theoretical analysis of queuing

systems is presented in the Appendix A1.

3 ANALYTICAL MODEL
We assume that the cloud center consists of M identical

PMs with up to m VMs each, as shown in Fig. 1. Super-

task arrivals follow a Poisson process, as explained above,

and the inter-arrival time A is exponentially distributed with
a rate of 1

λi
. We denote its cumulative distribution function

(CDF) with A(x) = Prob[A < x] and its probability

density function (pdf) with a(x) = λie
−λx; the Laplace-

Stieltjes Transform (LST) of this pdf is

A∗(s) =
∫ ∞

0

e−sxa(x)dx =
λi
λi + s

.

Note that the total arrival rate to the cloud center is λ so
that

λ =

M∑
i=1

λi.

Let gk be the probability that the super-task size is k =
1, 2, . . .MBS, in which MBS is the maximum batch size

which, for obvious reasons, must be finite; both gk and

MBS depend on user application. Let g and Πg(z) be the
mean value and probability generating function (PGF) of

the task burst size, respectively:

Πg(z) =

MBS∑
k=1

gkz
k

g = Π(1)
g (1)

(1)

Therefore, we model each PM in the cloud center as an

M [x]/G/m/m+ r queuing system. Each PM may run up

to m VMs and has a queue size of r tasks.
Service times of tasks within a super-task are identically

and independently distributed according to a general distri-

bution. However, the parameters of the general distribution

(e.g., mean value, variance and etc.) are dependent on the

virtualization degree of PMs. The degradation of mean ser-

vice time due to workload can be approximated using data

from recent cloud benchmarks [2]; unfortunately, nothing

can be inferred about the behavior of higher moments of the

1. Appendices can be found in the online supplement of this paper.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, 201Z 4

service time [3]. For example, Fig. 2 depicts the VMmark

performance results for a family of same-generation PMs

under different number of deployed tiles [22]. The VMmark

score is an overall performance of a server under virtualized

environment; a detailed description of VMmark score can

be found in [21]. From date in Fig. 2, we can extract

the dependency of mean service time on the number of

deployed VMs, normalized to the service time obtained

when the PM runs a single tile, as shown in Fig. 2. Note

that mean service time represents both computation and

communication time for a task within super-tasks.

��������	
���
��	�������������

� � � � � �� �� ��
�

�

�

�

�

��

��

���

���

���

���

���

	�
��
��
��
��
�

��
��

�
���
�
��

	�������������

�
�
�
��
��

��
�

Fig. 2. Performance vs. no. of tiles.

The dependency shown in Fig. 2 may be approximated

to give the normalized mean service time, bn(y), per tile
as a function of virtualization degree:

bn(y) =
b(y)

b(1)
= 1/(0.996− (8.159 ∗ 10−6) ∗ y4.143) (2)

where y denotes the number of tiles deployed on a sin-
gle PM. Therefore, the CDF of the service time will be

By(x) = Prob [By < x] and its pdf is by(x), while the
corresponding LST is

B∗
y(s) =

∫ ∞

0

e−sxby(x)dx.

The mean service time is then:

b(y) = −B′∗
y (0).

If the maximum number of allowed tiles on each PM is Ω,
then the aggregate LST will be

B∗(s) =
Ω∑
y=1

pyB
∗
y(s).

where py is the probability of having y tiles on a single
PM. Then the aggregate mean service time is

b = −B′∗(0) =
Ω∑
y=1

pyb(y).

The mass probabilities {py, y = 1 . . Ω} are dependent on
the traffic intensity and obligations stemming from service

����

�����	
��
�
���
��

���
������ ��������
������
	���
�	�����

��������
�
	���
�	�����

�	����
�
�	�����
�
��
 ��
	��	�

����	��
��
!		��
�

Fig. 3. A sample path of the original process, em-
bedded semi-Markov process, and embedded Markov
process.

level agreement between the provider and the user. A

cloud provider may decide to deploy more tiles on PMs

to reduce the waiting time – which, according to (2), will

lead to deterioration of service time. We will examine

the dependency between y and the traffic intensity in our
numerical validation.

Residual task service time, denoted with B+, is the time

interval from an arbitrary point during a service interval to

the end of that interval. Elapsed task service time, denoted
with B−, is the time interval from the beginning of a service

interval to an arbitrary point within that interval. Residual

and elapsed task service times have the same probability

distribution [19], the LST of which can be calculated as

B∗
+(s) = B

∗
−(s) =

1−B∗(s)
sb

(3)

The traffic intensity may be defined as ρ � λg

mb
. For

practical reasons, we assume that ρ < 1.

3.1 Approximation by embedded processes

To solve this model, we adopt the technique of embedded

Markov chain [19], [14]. The problem stems from the fact

that our M [x]/G/m/m+ r system is non-Markovian, and

the approximate solution requires two steps.

First, we model our non-Markovian system with an

embedded semi-Markov process, hereafter referred to as

eSMP, that coincides with the original system at moments

of super-task arrivals and task departures. To determine

the transition probabilities of the embedded semi-Markov

process, we need to count the number of task departures

between two successive task arrivals (see Fig. 3).

Second, as the counting process is intractable, we intro-

duce an approximate embedded Markov process, hereafter

referred to as aEMP, that models the embedded semi-

Markov process in a discrete manner (see Fig. 4). In aEMP,

task departures that occur between two successive super-

task arrivals (of which there can be zero, one, or several)

are considered to occur at the times of super-task arrivals.

Therefore, aEMP models the embedded semi-Markov

process (and, by extension, the original process) only at the

moments of super-task arrivals. Since we can’t determine

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, 201Z 5

Fig. 4. Approximate embedded Markov chain (aEMC).

the exact moments of task departures, the counting process

is only approximate, but the approximation error is rather

low and decreases with an increase in load, as will be

discussed below.

A sample path of the three processes: the original one, the

embedded semi-Markov, and the approximate embedded

Markov one, is shown schematically in Fig. 3.

�������

�� ���� ������	
���

��
�
��

	
���
���
�	����

	
��

���	
����

�����	��

���� 	
����

�����	��

���� 	
��������
������
���
�	�����������	��

Fig. 5. Observation points.

The approximate embedded Markov chain, hereafter re-

ferred to as aEMC, that corresponds to aEMP is shown in

Fig. 4. States are numbered according to the number of

tasks currently in the system (which includes both those

in service and those awaiting service). For clarity, some

transitions are not fully drawn.

Let An and An+1 indicate the moment of nth and

(n + 1)th super-task arrivals to the system, respectively,

while qn and qn+1 indicate the number of tasks found in the

system immediately before these arrivals; this is schemati-

cally shown in Fig.5. If k is the size of super-task and vn+1

indicates the number of tasks which depart from the system

between An and An+1, then, qn+1 = qn − vn+1 + k.
To solve aEMC, we need to calculate the corresponding

transition probabilities, defined as

P (i, j, k) � Prob [qn+1 = j|qn = i andXg = k] .
In other words, we need to find the probability that i+k−j
customers are served during the interval between two suc-

�������

�� ���� ������	
���

��
�
��

��������
�����������

���

���

����	 �����	 ���	 ���	

���	

	
���
���
�	����

	
��

Fig. 6. System behavior between two observation
points.

cessive super-task arrivals. Such counting process requires

the exact knowledge of system behavior between two super-

task arrivals. Obviously for j > i+k, P (i, j, k) = 0. Since
there are at most i+ k tasks present between the arrival of
An and An+1. For calculating other transition probabilities

in aEMC, we need to identify the distribution function of

residence time for each state in eSMP. Let us now describe

these residence times in more detail.

• Case 1: The state residence time for the first departure

is remaining service time, B+(x), since the last arrival
is a random point in the service time of the current

task.

• Case 2: If there is a second departure from the same

server, then clearly the state residence time is the

service time (B(x)).
• Case 3: No departure between two super-task arrivals

as well as the last departure before the next arrival

make the state residence time exponentially distributed

with the mean value of 1
λ .

• Case 4: If ith departure is from another server, then

the CDF of state residence time is Bi+(x). Consider
the departure D21 in Fig. 6, which takes place after

departure D11. Therefore the moment of D11 could

be considered as an arbitrary point in the remaining

service time of the task in server #2, so the CDF of

residence time for the second departure is B2+(x).
As a result, the LST of B2+(x) is the same as

B∗
+(s), similar to (3) but with an extra recursion

step. Generally, the LSTs of residence times between

subsequent departures from different servers may be

recursively defined as follow

B∗
i+(s) =

1−B∗
(i−1)+(s)

s · b(i−1)+

, i = 1, 2, 3, · · · (4)

in which b(i−1)+ = [− d
dsB

∗
(i−1)+(s)]s=0. To maintain

the consistency in notation we also define b0+ = b,
B∗
0+(s) = B

∗(s) and B∗
1+(s) = B

∗
+(s).

Let Rk(x) denotes the CDF of residence times at state
k in eSMP:

Rk(x) =

⎧⎪⎪⎨
⎪⎪⎩
B+(x), Case 1

B(x), Case 2

A(x), Case 3

Bi+(x), Case 4 i = 2, 3, · · ·
(5)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, 201Z 6

3.2 Departure probabilities

To find the elements of the transition probability matrix,

we need to count the number of tasks departing from the

system in the time interval between two successive super-

task arrivals. Therefore at first step, we need to calculate

the probability of having k arrivals during the residence
time of each state. Let N (B+), N (B) and N (Bi+), where
i = 2, 3, . . ., indicate the number of arrivals during time
periods B+(x), B(x) and Bi+(x), respectively. Due to
Poisson distribution of arrivals, we may define the following

probabilities:

αk � Prob[N (B+) = k] =

∫ ∞

0

(λx)k

k!
e−λxdB+(x)

βk � Prob[N (B) = k] =
∫ ∞

0

(λx)k

k!
e−λxdB(x)

δik � Prob[N (Bi+) = k] =
∫ ∞

0

(λx)k

k!
e−λxdBi+(x)

(6)

We are also interested in the probability of having no ar-

rivals; this will help us calculate the transition probabilities

in aEMC.

Px � Prob[N (B+)= 0] =

∫ ∞

0

e−λxdB+(x)= B
∗
+(λ)

Py � Prob[N (B)= 0] =
∫ ∞

0

e−λxdB(x)= B∗(λ)

Pix � Prob[N (B2+)= 0] =

∫ ∞

0

e−λxdBi+(x)= B∗
i+(λ)

Pxy = PxPy
(7)

Note that P1x = Px. We may also define the probability of
having no departure between two super-task arrivals. Let A
be an exponential random variable with the parameter of λ,
and let B+ be a random variable which is distributed ac-

cording to B+(x) (remaining service time). The probability
of having no departures is

Pz = Prob [A < B+]

=

∫ ∞

x=0

P{A < B+|B+ = x }dB+(x)

=

∫ ∞

0

(1− e−λx)dB+(x)

= 1−B∗
+(λ) = 1− Px

(8)

Using probabilities Px, Py , Pxy , Pix and Pz we may
define the transition probabilities for aEMC. To keep the

model tractable, we consider that no single VM will

experience more than three task departures between two

successive super-task arrivals. Since the cloud center is

assumed to have a large number of PMs and each of

which is capable of running a high number of VMs,

assuming three departures makes our performance model

very close to real cloud centers. Note that, we model each

VM in between two super-task arrivals and for such a

period of time we consider the probability of having up

to three departures which is highly unlikely under stable

configurations (i.e. ρ<0.9).

������

�
����

�
������

�
������

�����
�	
	�
������

	���	
	�������
�

������

�
����

�
������

�
������

����
�

�
��
�

�
����
�

�
����
�

����
���

�
��
���

�
����
���

�
����
�

����
���

�
��
���

�
����
���

�
����
���

� �

��

�������
���� �������
����

�������
�����������
����

Fig. 7. One-step transition probability matrix: range of
validity for P (i, j, k) equations.

3.3 Transition matrix
The transition probabilities may be depicted in the form of a

one-step transition matrix, as shown Fig. 7 where rows and

columns correspond to the number of tasks in the system

immediately before a super-task arrival (i) and immediately
after the next super-task arrival (j), respectively. As can
be seen, four operating regions may be distinguished,

depending on whether the input queue is empty or non-

empty before and after successive super-task arrivals. Each

region has a distinct transition probability equation that

depends on current state i, next state j, super-task size k,
and number of departures between two super-task arrivals.

Note that, in all regions, P (i, j, k) = Pz if i+ k = j.

3.3.1 Region 1
In this region, the input queue is empty and remains

empty until next arrival, hence the transitions originate and

terminate on the states labeled m or lower. Let us denote

the number of tasks which depart from the system between

two super-task arrivals as w(k) = i+ k − j. For i, j ≤ m,
the transition probability is

PLL(i, j, k) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(i,w(k))∑
z=0

(
i+ k

w(k)

)
Pw(k)x (1− Px)j , if i+ k ≤ m

min(i,w(k))∑
z=i+k−m

(
i

z

)
P zx (1− Px)i−z·(

k
w(k)−z

)
P
w(k)−z
xy (1− Pxy)z−i+j , if i+ k > m

3.3.2 Region 2
In this region, the queue is empty before the transition but

non-empty afterward, hence i ≤ m, j > m. This means
that the arriving super-task was queued because it could

not be serviced immediately due to the insufficient number

of idle servers. The corresponding transition probabilities

are

PLH(i, j, k) = Π
w(k)
s=1 [(i− s+ 1)Psx] · (1− Px)i−w(k)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, 201Z 7

3.3.3 Number of idle servers

To calculate the transition probabilities for regions 3 and 4,

we need to know the probability of having n idle servers
out of m. Namely, due to the total rejection policy, a super-
task may have to wait in the queue even when there are

idle servers: this happens when the number of idle servers

is smaller than the number of tasks in the super-task at the

head of the queue. To calculate this probability, we shape

the situation formally to the following scenario: consider

a Poisson batch arrival process in which the batch size is

a generally distributed random variable, and each arriving

batch is stored in a finite queue. Storing the arrival batches

in the queue will be continued until either the queue gets

full or the last arrival batch can’t fit in. If the queue size

is t, the mean batch size is g, and the maximum possible

batch size is equal to MBS, what is the probability, Pi(n),
of having n unoccupied spaces in the queue? Unfortunately,
this probability can’t be computed analytically. To this end,

we have simulated the queue size for different mean batch

sizes, using the object-oriented Petri net-based simulation

engine Artifex by RSoftDesign, Inc. [18]. We have fixed the

queue size at m = 200, and ran the simulation experiment
one million times; the resulting probability distribution is

shown in Fig. 8.

Fig. 8. Probability of having n idle servers, Pi(n), for
different mean batch sizes.

The shape indicates an exponential dependency so using

a curve fitter tool [5], we have empirically found the

parameters that give the best fit, as shown in Table 2,

for different values of mean batch size. In all cases, the

approximation error remains below 0.18%. This allows us

TABLE 2
Parameters for optimum exponential curves abx.

mean super-task size

Param. 5 10 15 20 25

a 1.99E-01 1.00E-01 6.87E-02 5.40E-02 4.59E-02

b 8.00E-01 9.00E-01 9.33E-01 9.50E-01 9.60E-01

to calculate the transition probabilities for regions 3 and 4

in the transition probability matrix.

3.3.4 Region 3

Region 3 corresponds to the case where the queue is not

empty before and after the arrivals, i.e., i, j > m. In this
case, transitions start and terminate at states above m in

Fig. 4, and the state transition probabilities can be computed

as following product:

PHH(i, j, k) �
m∑

ψ=(m−MBS+1)

min (w(k),ψ)∑
s1=min(w(k),1)(

ψ

s1

)
P s1x (1− Px)ψ−s1 · Pi(m− ψ)×

m−ψ+s1∑
δ=max(0,m−ψ+s1−MBS+1)

min(δ,w(k)−s1)∑
s2=min(w(k)−s1,1)(

δ

s2

)
P s22x(1− P2x)δ−s2 · Pi(m− ψ + s1 − δ)×

m−ψ+s1−δ+s2∑
φ=max(0,m−ψ+s1−δ+s2−MBS+1)

(
φ

w(k)− s1 − s2

)

P
w(k)−s1−s2
3x (1− P3x)φ−w(k)+s1+s2 ·

Pi(m− ψ + s1 − δ + s2 − φ)
(9)

3.3.5 Region 4

Finally, region 4 corresponds to the situation where the

queue is non-empty at the time of the first arrival, but it is

empty at the time of the next arrival: i > m, j ≤ m. The
transition probabilities for this region are

PHL(i, j, k) �
m∑

ψ=(m−MBS+1)

min (w(k),ψ)∑
s1=min(0,ψ−j)(

ψ

s1

)
P s1x (1− Px)ψ−s1 · Pi(m− ψ)×

m−ψ+s1∑
δ=max(0,m−ψ+s1−MBS+1)

min(δ,w(k)−s1)∑
s2=min(w(k)−s1,ψ−j)(

δ

s2

)
P s22x(1− P2x)δ−s2 · Pi(m− ψ + s1 − δ)×

m−ψ+s1−δ+s2∑
φ=max(0,m−ψ+s1−δ+s2−MBS+1)

(
φ

w(k)− s1 − s2

)

P
w(k)−s1−s2
3x (1− P3x)φ−w(k)+s1+s2 ·

Pi(m− ψ + s1 − δ + s2 − φ)
(10)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, 201Z 8

3.4 Equilibrium balance equations
We are now ready to set the balance equations for the

transition matrix:

πi =
m+r∑

j=max[0,i−MBS]
πjpji , 0 ≤ i ≤ m+ r (11)

augmented by the normalization equation
∑m+r

i=0 πi = 1.
The total number of equations is m+ r + 2, but there are
only m+r+1 variables [π0, π1, π2, . . . , πm+r]. Therefore,
we need to remove one of the equations in order to

obtain the unique equilibrium solution (which exists if the

corresponding Markov chain were ergodic). A wise choice

would be the last equation in (11) which holds the minimum

amount of information about the system in comparison with

the others. Here, the steady state balance equations can’t be

solved in closed form, hence we must resort to a numerical

solution.

3.5 Distribution of the number of tasks in a PM
Once we obtain the steady state probabilities we are able

to establish the PGF for the number of tasks in the PM at

the time of a super-task arrival:

Π(z) =

m+r∑
k=0

πzz
k.

Due to batch arrivals, the PASTA property doesn’t hold;

thus, the PGF Π(z) for the distribution of the number

of tasks in the PM at an arbitrary time is not the same

as the PGF P (z) for the distribution of the number of

tasks in the PM at the time of a super-task arrival. To

obtain the former, we employ a two-step approximation

technique with an embedded semi-Markov process and

an approximate embedded Markov process, as explained

above. aEMP imitates the original process but it will be

updated only at the moments of super-task arrivals. Let

Hk(x) be the CDF of the residence time that aEMP stays
in the state k:

Hk(x) � Prob[tn+1 − tn ≤ x | qn = k] = 1− eλx,
k = 0, 1, 2, ...,m+ r

(12)

which in our model does not depend on n. The mean
residence time in state k is

hk =

∫ ∞

0

[1−Hk(x)]dx = 1

λ
, k = 0, 1, 2, ...,m+ r.

and the steady-state distribution in aEMP is given by [19]

psmk =
πkhk∑m+r
j=0 πjhj

=
πk

λ
∑m+r

j=0 πj1/λ
= πk (13)

where {πk; k = 0, 1, ... ,m + r} is the distribution

probability at aEMC. So the steady-state probability of

aEMP is identical with the embedded aEMC. We now

define the CDF of the elapsed time from the most recent

observing point looking form an arbitrary time by

H−
k (y) =

1

hk

∫ y

0

[1−Hk(x)]dx, k = 0 . . m+ r (14)

The arbitrary-time distribution is given by

pi =
m+r∑
j=i

psmj

∫ ∞

0

P+ dH−
j (y) =

m+r∑
j=i

πjP (j, i, 0).

in which P+ is the probability of changes in y that bring
the state from j to i. The PGF of the number of tasks in
the PM is given by

P (z) =
m+r∑
i=0

piz
i (15)

Mean number of tasks in the PM, then, obtained as

p = P
′
(1). We also obtained the distribution of response

and waiting time; due to space limitation, the results are

presented in Appendix B.

3.6 Blocking probability
Since arrivals are independent of buffer state and the

distribution of number of tasks in the PM was obtained,

we are able to directly calculate the blocking probability of

a super-task in a PM with buffer size of r:

PMBP (r) =

MBS−1∑
k=0

[
MBS∑
i=0

pm+r−i−k(1−G(i))
]
· Pi(k).

The buffer size, rε, required to keep the blocking probabil-
ity below the certain value, ε, is:

rε = {r ≥ 0 | PMBP (r) ≤ ε and PMBP (r − 1) > ε}.
Therefore, the blocking probability of a cloud center with

M PMs is BP = (PMBP)
M .

3.7 Probability of immediate service
We are also interested in the probability that a super-

task will get service immediately upon arrival, without any

queuing. In this case, the response time would be equal to

the service time:

PMpis =

MBS−1∑
k=0⎡

⎣m−k−MBS∑
j=0

pj +

m−k−1∑
i=m−k−MBS+1

piG(m− k − i)
⎤
⎦ · Pi(k)

Thus, the probability of immediate service for a cloud

center having M PMs is given by:

Pimm = 1− (1− PMpis)
M (16)

4 NUMERICAL VALIDATION
The resulting balance equations of analytical model have

been solved using Maple 15 from Maplesoft, Inc. [15]. To

validate the analytical solution, we have also built a discrete

event simulator of the cloud center using the Artifex engine

[18]. Due to clarity and space limitation we present all

the simulation results in the supplemental of the paper.

We have configured a cloud center with M = 1000 PMs
under two degrees of virtualization: 100 and 200 VMs per

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, 201Z 9

(a) Mean number of tasks in the system. (b) Mean queue length. (c) Blocking probability.

(d) Probability of getting immediate service. (e) Response time. (f) Waiting time in the queue.

Fig. 9. Performance measures as function of mean batch size of super-tasks.

PM. We refer them as moderate and heavy configuration
respectively. Latest VMmark results [22], show that only a

few types of current state-of-the-art PMs can run up to 200

VMs with an acceptable performance while most of them

are optimized to run up to 100 VMs.
The input queue size is set to r = 300 tasks. Traffic

intensity is set to ρ = 0.85, which may seem too high but

could easily be reached in private cloud centers or public

centers of small/medium size providers. The distribution

of batch size is assumed to be truncated Geometric, with

maximum batch size set to MBS = 3
g +1 in which g is the

probability of success in the Geometric distribution. Note

that real cloud centers may impose an upper limit for the

number of servers requested by a customer. Task service

time is assumed to have Gamma distribution, which is

chosen because it allows the coefficient of variation to be set

independently of the mean value. The mean value depends

on the degree of virtualization: on account of (2), we set the

task service time as 120 and 150 minute for moderate and

heavy virtualization, respectively. Two values are used for

the coefficient of variation: CoV = 0.5 and 1.4, which give
rise to hypo- and hyper-exponentially distributed service

times, respectively.
Diagrams in Fig. 9 show the analytical results for various

performance indicators vs. super-task size. The correspond-

ing simulation results are presented in Appendix C. As can

be seen, the queue size increases with mean batch size

whereas the mean number of tasks in the system decreases

with it. The moderate configuration always outperforms

the heavy configuration for single request arrivals (i.e.,

super-tasks with size one), as opposed to bigger super-tasks.

This may be attributed to the total rejection policy, which

lets some servers to remain idle even though there exist

some super-tasks (potentially big super-tasks) in the queue.

As might be expected, the blocking probability increases

as the size of batches increases, while the probability of

immediate service (which might be termed availability)

decreases almost linearly. Nevertheless, the probability of

immediate service is above 0.5 in the observed range of

mean batch sizes, which means that more than 50% of

user requests will be serviced immediately upon arrival,

even though the total traffic is ρ = 0.85, which is rather
high.

We have also computed the system response time and

queue waiting time for super-tasks. Note that, because of

the total rejection policy explained above, the response and

waiting times for super-tasks are identical for all individual

tasks within the super-task. As depicted in Fig. 9(e), re-

sponse time—which is the sum of waiting time and service

time— and waiting time, Fig. 9(f), slowly increase with

an increase in mean batch size. This may be attributed to

the fact that larger mean batch size leads to larger super-

tasks, which are more likely to remain longer in the queue

before the number of idle servers becomes sufficiently high

to accommodate all of its individual tasks. Also, heavy

configuration imposes shorter waiting time in queue on

super-tasks. In other words, waiting time in queue is heavily

influenced by admission policy rather than overhead of

virtualization. However, response time is more sensitive to

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, 201Z 10

the degree of virtualization. It can also be seen that CoV of
service time plays an important role on total response time

for large super-tasks (i.e., size 25). In all of the experiments

described above, the agreement between analytical and

simulation results is very good, which confirms the validity

of the proposed approximation procedure using eSMP and

aEMP/aEMC.

Not unexpectedly, performance at hyper-exponentially

distributed service times (CoV = 1.4) is worse in general
than that at hypo-exponential ones (CoV = 0.5). To obtain
further insight into cloud center performance, we have

calculated the higher moments of response time which are

shown in Appendix D. We have also examined two types

of homogenization, based on coefficient of variation of

task service time and super-task size, the result of which

presented in Appendix E.

5 CONCLUSIONS
In this paper, we have described an analytical model for

performance evaluation of a highly virtualized cloud com-

puting center under Poisson batch arrivals with generally

distributed task sizes and generally distributed task service

times, with additional correction for performance deteri-

oration under heavy workload. The model is based on a

two-stage approximation technique where the original non-

Markovian process is first modeled with an embedded semi-

Markov process, which is then modeled by an approximate

embedded Markov process but only at the time instants

of super-task arrivals. This technique provides accurate

computation of important performance indicators such as

the mean number of tasks in the system, queue length,

mean response and waiting time, blocking probability and

the probability of immediate service.

Our results show that admitting requests with widely

varying service times to a unified, homogeneous cloud cen-

ter may result in longer waiting time and lower probability

of getting immediate service. Both performance metrics

may be improved by request homogenization, obtained by

partitioning the incoming super-tasks on the basis of super-

task size and/or coefficient of variation of task service

times and servicing the resulting sub-streams by separate

cloud sub-centers (or sub-clouds). This simple approach

thus offers distinct benefits for both cloud users and cloud

providers.

REFERENCES
[1] Amazon Elastic Compute Cloud, User Guide, Amazon Web

Service LLC or its affiliate, Aug. 2012. [Online]. Available:
http://aws.amazon.com/documentation/ec2

[2] A. Baig, “UniCloud Virtualization Benchmark Report,” white
paper, March 2010, http://www.oracle.com/us/technologies/linux/
intel-univa-virtualization-400164.pdf.

[3] J. Cao, W. Zhang, and W. Tan, “Dynamic control of data streaming
and processing in a virtualized environment,” Automation Science
and Engineering, IEEE Transactions on, vol. 9, no. 2, pp. 365–376,
April 2012.

[4] A. Corral-Ruiz, F. Cruz-Perez, and G. Hernandez-Valdez, “Teletraffic
model for the performance evaluation of cellular networks with
hyper-erlang distributed cell dwell time,” in 71st IEEE Vehicular
Technology Conference (VTC 2010-Spring), May. 2010, pp. 1–6.

[5] CurveExpert, “Curveexpert professional 1.1.0,” Website, Mar. 2011,
http://www.curveexpert.net.

[6] J. Fu, W. Hao, M. Tu, B. Ma, J. Baldwin, and F. Bastani, “Virtual
services in cloud computing,” in IEEE 2010 6th World Congress on
Services, Miami, FL, 2010, pp. 467–472.

[7] R. Ghosh, K. S. Trivedi, V. K. Naik, and D. S. Kim, “End-to-
end performability analysis for infrastructure-as-a-service cloud: An
interacting stochastic models approach,” in Proceedings of the 2010
IEEE 16th Pacific Rim International Symposium on Dependable
Computing, 2010, pp. 125–132.

[8] G. Grimmett and D. Stirzaker, Probability and Random Processes,
3rd ed. Oxford University Press, Jul 2010.

[9] Hewlett-Packard Development Company, Inc., “An overview of the
VMmark benchmark on HP Proliant servers and server blades,”
white paper, May 2012, ftp://ftp.compaq.com/pub/products/servers/
benchmarks/VMmark Overview.pdf.

[10] H. Khazaei, J. Mišić, and V. B. Mišić;, “A fine-grained performance
model of cloud computing centers,” IEEE Transactions on Parallel
and Distributed Systems, vol. 99, no. PrePrints, p. 1, 2012.

[11] H. Khazaei, J. Mišić, and V. B. Mišić, “Performance analysis of
cloud computing centers using M/G/m/m+r queueing systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23,
no. 5, p. 1, 2012.

[12] H. Khazaei, J. Mišić, V. B. Mišić, and N. Beigi Mohammadi, “Avail-
ability analysis of cloud computing centers,” in Globecom 2012
- Communications Software, Services and Multimedia Symposium
(GC12 CSSM), Anaheim, CA, USA, Dec. 2012.

[13] H. Khazaei, J. Mišić, V. B. Mišić, and S. Rashwand, “Analysis of
a pool management scheme for cloud computing centers,” IEEE
Transactions on Parallel and Distributed Systems, vol. 99, no.
PrePrints, 2012.

[14] L. Kleinrock, Queueing Systems, Volume 1, Theory. Wiley-
Interscience, 1975.

[15] Maplesoft, Inc., “Maple 15,” Website, Mar. 2011, http://www.
maplesoft.com.

[16] A. Patrizio, “IDC sees cloud market maturing
quickly,” Datamation, Mar. 2011. [Online]. Avail-
able: http://itmanagement.earthweb.com/netsys/article.php/3870016/
IDC-Sees-Cloud-Market-Maturing-Quickly.htm

[17] H. Qian, D. Medhi, and K. S. Trivedi, “A hierarchical model to
evaluate quality of experience of online services hosted by cloud
computing,” in Integrated Network Management (IM), IFIP/IEEE
International Symposium on, May. 2011, pp. 105–112.

[18] RSoft Design, Artifex v.4.4.2. San Jose, CA: RSoft Design Group,
Inc., 2003.

[19] H. Takagi, Queueing Analysis. Amsterdam, The Netherlands: North-
Holland, 1991, vol. 1: Vacation and Priority Systems.

[20] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A
break in the clouds: towards a cloud definition,” ACM SIGCOMM
Computer Communication Review, vol. 39, no. 1, 2009.

[21] VMware, Inc., “VMmark: A Scalable Benchmark for Virtualized
Systems,” Technical Report, Sept. 2006, http://www.vmware.com/
pdf/vmmark intro.pdf.

[22] ——, “VMware VMmark 2.0 benchmark results,” Website, Sept.
2012, http://www.vmware.com/a/vmmark/.

[23] L. Wang, G. von Laszewski, A. Younge, X. He, M. Kunze, J. Tao,
and C. Fu, “Cloud computing: a perspective study,” New Generation
Computing, vol. 28, pp. 137–146, 2010.

[24] K. Xiong and H. Perros, “Service performance and analysis in
cloud computing,” in IEEE 2009 World Conference on Services, Los
Angeles, CA, 2009, pp. 693–700.

[25] B. Yang, F. Tan, Y. Dai, and S. Guo, “Performance evaluation of
cloud service considering fault recovery,” in First Int’l Conference
on Cloud Computing (CloudCom) 2009, Beijing, China, Dec. 2009,
pp. 571–576.

[26] N. Yigitbasi, A. Iosup, D. Epema, and S. Ostermann, “C-meter:
A framework for performance analysis of computing clouds,” in
CCGRID09: Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, 2009, pp. 472–477.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, 201Z 11

Hamzeh Khazaei received his B.S. (2004)
and M.S. (2008) degrees in computer sci-
ence from Amirkabir University of Tech-
nology (Tehran Polytechnic), Iran. Currently
he is a Ph.D candidate in Department
of Computer Science, University of Mani-
toba, Canada. His research interests include
performance evaluation of cloud computing
centers, modeling computing systems and
stochastic processes.

Jelena Mišić (M’91, SM0’8) received her
PhD degree in Computer Engineering from
University of Belgrade, Serbia, in 1993. She
is currently a Professor of Computer Science
at Ryerson University, Toronto, Canada. Her
research interests include wireless networks
and security in wireless networks.

Vojislav B. Mišić (M’93, SM’08) received
his PhD in Computer Science degree from
University of Belgrade, Serbia, in 1993. He
is a Professor of Computer Science at Ryer-
son University in Toronto, Ontario, Canada.
His research interests include performance
evaluation of wireless networks and systems,
and software engineering.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

